首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   55篇
  国内免费   7篇
  2024年   1篇
  2022年   3篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   19篇
  2013年   66篇
  2012年   20篇
  2011年   15篇
  2010年   18篇
  2009年   18篇
  2008年   15篇
  2007年   22篇
  2006年   8篇
  2005年   13篇
  2004年   13篇
  2003年   17篇
  2002年   17篇
  2001年   13篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有359条查询结果,搜索用时 131 毫秒
11.
介绍了军械装备通用润滑脂的研制过程及性能,分析了基础油、稠化剂、抗氧化剂和防锈剂对润滑脂性能的影响。实验室理化性能测定和实际使用结果表明,该脂主要性能达到了美军标M IL-PRF-10924G的质量标准,可以满足我军军械装备的使用要求。  相似文献   
12.
本文就我国国家标准《光学零件表面疵病》与俄罗斯相关标准及美国军用相关标准进行对比、分析。就这三个国家(军)同类基础标准的标注方法、麻点、擦痕、表面疵病密集和检验方法进行对比、分析。仅供读者参考。  相似文献   
13.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation.  相似文献   
14.
In the field of nanofabrication, engineers often face unique challenges in resource‐limited experimental budgets, the sensitive nature of process behavior with respect to controllable variables, and highly demanding tolerance requirements. To effectively overcome these challenges, this article proposes a methodology for a sequential design of experiments through batches of experimental runs, aptly named Layers of Experiments with Adaptive Combined Design (LoE/ACD). In higher layers, where process behavior is less understood, experimental regions cover more design space and data points are more spread out. In lower layers, experimental regions are more focused to improve understanding of process sensitivities in a local, data‐rich environment. The experimental design is a combination of a space‐filling and an optimal design with a tuning parameter that is dependent on the amount of information accumulated over the various layers. The proposed LoE/ACD method is applied to optimize a carbon dioxide (epet‐CO2) assisted deposition process for fabricating silver nanoparticles with pressure and temperature variables. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 127–142, 2015  相似文献   
15.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   
16.
Service systems such as call centers and hospital emergency rooms typically have strongly time‐varying arrival rates. Thus, a nonhomogeneous Poisson process (NHPP) is a natural model for the arrival process in a queueing model for performance analysis. Nevertheless, it is important to perform statistical tests with service system data to confirm that an NHPP is actually appropriate, as emphasized by Brown et al. [8]. They suggested a specific statistical test based on the Kolmogorov–Smirnov (KS) statistic after exploiting the conditional‐uniform (CU) property to transform the NHPP into a sequence of i.i.d. random variables uniformly distributed on [0,1] and then performing a logarithmic transformation of the data. We investigate why it is important to perform the final data transformation and consider what form it should take. We conduct extensive simulation experiments to study the power of these alternative statistical tests. We conclude that the general approach of Brown et al. [8] is excellent, but that an alternative data transformation proposed by Lewis [22], drawing upon Durbin [10], produces a test of an NHPP test with consistently greater power. We also conclude that the KS test after the CU transformation, without any additional data transformation, tends to be best to test against alternative hypotheses that primarily differ from an NHPP only through stochastic and time dependence. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 66–90, 2014  相似文献   
17.
应用分形几何学方法,研究了不同路径间距条件下的堆焊再制造层表面形貌,用表面分形维数对堆焊再制造层表面质量进行了表征。结果表明:堆焊再制造层表面在一定尺度范围内具有分形特性,分形维数很好地表征了材料表界面的粗糙和复杂、不规则程度,是一个能够反映出表面内禀特性的特征参数,可以用分形维数来表征堆焊再制造层的表面质量;不同路径间距条件下的堆焊再制造层表面分形维数不同,路径间距越接近理论最佳值,堆焊再制造层表面分形维数越大,表面质量也越高。该方法可为进一步研究堆焊再制造层表面质量,以及优化堆焊熔敷成形再制造工艺参数提供定量依据。  相似文献   
18.
为了解决多个自主式水下无人航行器(AUV)在作曲线轨迹的航行时常规协同导航算法精度较低的难题,提出了一种基于极坐标的多AUV协同导航与定位算法.首先,将本算法的模型、可观测性与常规的直角坐标系算法进行了分析与对比.接着,进行了基于实航数据的数值仿真.针对解决各种传感器受异常噪声干扰导致多AUV协同定位误差变大的问题,本...  相似文献   
19.
We state a balancing problem for mixed model assembly lines with a paced moving conveyor as: Given the daily assembling sequence of the models, the tasks of each model, the precedence relations among the tasks, and the operations parameters of the assembly line, assign the tasks of the models to the workstations so as to minimize the total overload time. Several characteristics of the problem are investigated. A line‐balancing heuristic is proposed based on a lower bound of the total overload time. A practical procedure is provided for estimating the deviation of any given line‐balance solution from the theoretical optimum. Numerical examples are given to illustrate the methodology. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
20.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号